N 632

Seat No.				

2024 III 15 1100 - N 632- MATHEMATICS (71) GEOMETRY—PART II (E) (REVISED COURSE)

Time: 2 Hours (Pages 11) Max. Marks: 40

37.	
Note	•—

- (i) All questions are compulsory.
- (ii) Use of a calculator is not allowed.
- (iii) The numbers to the right of the questions indicate full marks.
- (iv) In case of MCQs [Q. No. 1(A)] only the first attempt will be evaluated and will be given credit.
- (v) Draw proper figures wherever necessary.
- (vi) The marks of construction should be clear. Do not erase them.
- (vii) Diagram is essential for writing the proof of the theorem.

1.	(A)	Four alternative answers for each of the following
		sub-questions are given. Choose the correct alternative and
		write its alphabet:
		(1) Out of the dates given below which date constitutes a Pythagorean

(A) 15/8/17

triplet?

- (B) 16/8/16
- (C) 3/5/17
- (D) 4/9/15
- (2) $\sin \theta \times \csc \theta = ?$
 - (A) 1
 - (B) 0
 - (C) $\frac{1}{2}$
 - (D) $\sqrt{2}$
- (3) Slope of X-axis is
 - (A) 1
 - (B) -1
 - (C) 0
 - (D) Cannot be determined

(4)	A	circle	having	radius	3	cm,	then	the	length	of	its	largest
	che	ord is .										

- (A) 1.5 cm
- (B) 3 cm
- (C) 6 cm
- (D) 9 cm
- (B) Solve the following sub-questions:

4

- (1) If \triangle ABC ~ \triangle PQR and AB : PQ = 2 : 3, then find the value of $\frac{A(\triangle \ ABC)}{A(\triangle \ PQR)}$.
- (2) Two circles of radii 5 cm and 3 cm touch each other externally.Find the distance between their centres.
- (3) Find the side of a square whose diagonal is $10\sqrt{2}$ cm.
- (4) Angle made by the line with the positive direction of X-axis is 45°. Find the slope of that line.

2. (A) Complete any two activities and rewrite it:

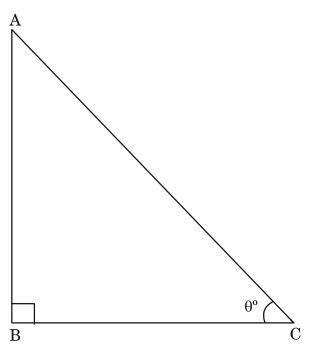
4

 $\begin{array}{c} & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

In the above figure, $\angle ABC$ is inscribed in arc ABC.

If $\angle ABC = 60^{\circ}$, find $m \angle AOC$.

Solution:


$$\angle ABC = \frac{1}{2} m(\text{arc AXC})$$

$$60^{\circ} = \frac{1}{2} m(\text{arc AXC})$$

 $= m(\operatorname{arc} \operatorname{AXC})$

But $m \angle AOC = \boxed{m(arc)}$ (Property of central angle)

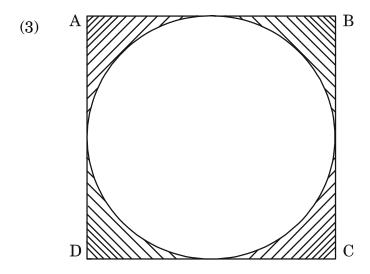
(2) Find the value of $\sin^2 \theta + \cos^2 \theta$.

Solution:

In \triangle ABC, \angle ABC = 90°, \angle C = θ °.

$$AB^2 + BC^2 =$$
 (Pythagoras theorem)

Divide both sides by AC^2

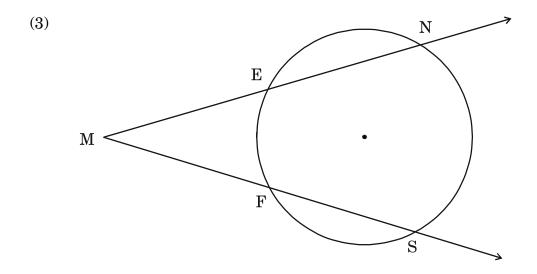

$$\frac{AB^2}{AC^2} + \frac{BC^2}{AC^2} = \frac{AC^2}{AC^2}$$

$$\therefore \qquad \left(\frac{AB}{AC}\right)^2 + \left(\frac{BC}{AC}\right)^2 = 1$$

$$But \quad \frac{AB}{AC} = \boxed{ } \quad and \quad \frac{BC}{AC} = \boxed{ }$$

$$\therefore \qquad \sin^2\theta + \cos^2\theta \; = \; \boxed{\hspace{1cm}}$$

In the figure given above, ABCD is a square and a circle is inscribed in it. All sides of a square touch the circle.

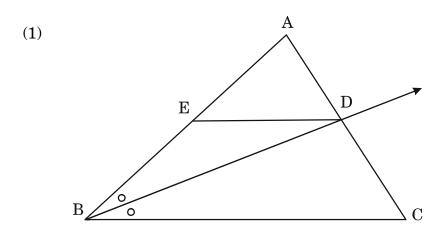

If AB = 14 cm, find the area of shaded region.

Solution:

Area of square =
$$\left(\begin{array}{c} \\ \\ \end{array}\right)^2$$
 (Formula)
= 14^2
= $\left(\begin{array}{c} \\ \end{array}\right)^2$ cm²
Area of circle = $\left(\begin{array}{c} \\ \end{array}\right)$ (Formula)
= $\frac{22}{7} \times 7 \times 7$
= 154 cm^2
(Area of square) = $\left(\begin{array}{c} \\ \text{Area of square} \\ \text{square} \end{array}\right)$ - $\left(\begin{array}{c} \\ \text{Area of circle} \\ \text{circle} \end{array}\right)$
= $196 - 154$
= $\left(\begin{array}{c} \\ \end{array}\right)$ cm²

- (B) Solve any four of the following sub-questions:
 - (1) Radius of a sector of a circle is 3.5 cm and length of its arc is 2.2 cm. Find the area of the sector.
 - (2) Find the length of the hypotenuse of a right-angled triangle if remaining sides are 9 cm and 12 cm.

In the above figure, $m(\text{arc NS}) = 125^{\circ}$, $m(\text{arc EF}) = 37^{\circ}$.


Find the measure of $\angle NMS$.

- (4) Find the slope of the line passing through the points A(2, 3), B(4, 7).
- (5) Find the surface area of a sphere of radius 7 cm.

P.T.O.

8

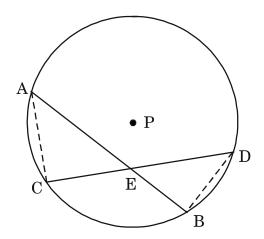
3. (A) Complete any one activity of the following and rewrite it: 3

In \triangle ABC, ray BD bisects \angle ABC, A-D-C, seg DE \parallel side BC, A-E-B, then for showing $\frac{AB}{BC}=\frac{AE}{EB}$, complete the following activity:

Proof:

In \triangle ABC, ray BD bisects \angle B

$$\therefore \qquad \frac{\Box}{BC} = \frac{AD}{DC} \dots (I) \left(\Box \right)$$


In \triangle ABC, DE \parallel BC

$$\therefore \qquad \frac{\Box}{EB} = \frac{AD}{DC} \qquad (II) \left(\Box \right)$$

$$\frac{AB}{\Box} = \frac{\Box}{EB}$$
 [from (I) and (II)]

(2)

Given:

Chords AB and CD of a circle with centre P intersect at point E.

To prove:

$$AE \times EB = CE \times ED$$

Construction:

Draw seg AC and seg BD.

Fill in the blanks and complete the proof.

Proof:

In \triangle CAE and \triangle BDE

 \cong \angle BDE (angles inscribed in the same arc)

$$\therefore \qquad \overline{DE} = \overline{CE} \qquad \cdots$$

$$\therefore \quad AE \times EB = CE \times ED.$$

- (B) Solve any two of the following sub-questions:
 - (1) Determine whether the points are collinear.

$$A(1, -3), B(2, -5), C(-4, 7)$$

- (2) Δ ABC ~ Δ LMN. In Δ ABC, AB = 5.5 cm, BC = 6 cm, CA = 4.5 cm. Construct Δ ABC and Δ LMN such that $\frac{BC}{MN} = \frac{5}{4}.$
- (3) Seg PM is a median of Δ PQR, PM = 9 and PQ² + PR² = 290, then find QR.
- (4) Prove that, 'If a line parallel to a side of a triangle intersects the remaining sides in two distinct points, then the line divides the side in the same proportion'.
- 4. Solve any two of the following sub-questions:
 - $(1) \qquad \frac{1}{\sin^2\theta} \frac{1}{\cos^2\theta} \frac{1}{\tan^2\theta} \frac{1}{\cot^2\theta} \frac{1}{\sec^2\theta} \frac{1}{\csc^2\theta} = -3 \; , \; \; then \; \; find \; \; the \\ value \; of \; \theta.$
 - (2) A cylinder of radius 12 cm contains water up to the height 20 cm.

 A spherical iron ball is dropped into the cylinder and thus water level raised by 6.75 cm. What is the radius of iron ball?
 - (3) Draw a circle with centre O having radius 3 cm. Draw tangent segments PA and PB through the point P outside the circle such that $\angle APB = 70^{\circ}$.

5.	Solve an	y one	of the	following	sub-questions	:	3
-----------	----------	-------	--------	-----------	---------------	---	---

(1) \square ABCD is trapezium, AB \parallel CD diagonals of trapezium intersects in point P.

Write the answers of the following questions:

- (a) Draw the figure using given information.
- (b) Write any one pair of alternate angles and opposite angles.
- (c) Write the names of similar triangles with test of similarity.
- (2) AB is a chord of a circle with centre O. AOC is diameter of circle, AT is a tangent at A.

Write answers of the following questions:

- (a) Draw the figure using given information.
- (b) Find the measures of $\angle CAT$ and $\angle ABC$ with reasons.
- (c) Whether $\angle CAT$ and $\angle ABC$ are congruent? Justify your answer.